一方面,移动终端设备内芯片数量急剧增加,整体价值不断攀升,比如说,高端4G手机中射频前端的价值达到2G制式手机的17倍,而在5G时代射频前端价值则达到4G制式下的两倍以上;[9]
另一方面,移动终端设备留给射频前端芯片的空间并没有增加,以往,射频前端模块电路设计着重于功率放大器(PA)设计,追求低电压操作、高功率输出、高功率,以符合使用低电压电池,藉以缩小体积,同时达到省电的目的[10],但在功能愈加丰富的现今,厂商只能不能提升射频前端的集成度,来满足现有设计需求,这必然会增加中高端市场准入门槛。
滤波器:可分为射频滤波器与基站滤波器,SAW(声表面波)、BAW(体声波)是目前主流技术,相比SAW,BAW的的频段更高、损耗更小、频率范围更广[12]。目前,SAW偏向中低频率数据处理,以日系厂商为主,市场应用空间更大,BAW偏向高频率数据处理,以美系厂商为主,应用空间更窄,但价值量高[2]。从产业链端来看,上游关键原料包括压电晶片(SAW常用钽酸锂、铌酸锂等,FBAR常用氮化铝等)和陶瓷基板,主要集中在日本;中游器件制造集中在日本和美国;下游需求端包括手机、车载终端、VR设备等。4G时代,一款手机仅需30多个滤波器,而5G时期通常要使用上百个滤波器,此外单价也从7.5美金提升至8~12美元,市场空间正逐步攀升[13]。市场方面,滤波器将从2022年的121亿美元提升至2030年的346.1亿美元,年复合增长率16.2%;[14]
(资料图片仅供参考)
放大器:分为射频低噪声放大器和射频功率放大器两类,主要采用PHEMT和HBT两类晶体管实现,X波段及以上频段主要采用频率高、噪声低、输出功率大的PHEMT工艺,HBT工艺则在高速、大动态范围、低谐波失真、低相位噪声等应用占据独特地位[15],只有满足一定技术指标的放大器才具备实用性,包括功率输出、系统效率、频率范围和失真等,国内玩家包括慧智微、紫光展锐、飞骧科技、昂瑞微等。市场方面,PA将从2022年的50.3亿美元增长至2032年的210.4亿美元,年复合增长率15%[16],LNA将从2020年的20.5亿美元增长至2027年的32.9亿美元,年复合增长率6.97%;[17]
射频开关:主要包括传导开关和天线开关两类,主要采用RF-SOI工艺,广泛应用于智能手机等移动智能终端[11]。市场方面,射频开关将从2020年的40.2亿美元增长至2027年的85.6亿美元,年复合增长率11.4%;[18]
双工器:又称天线共用器,由两组不同频率的带阻滤波器组成,避免本机发射信号传输到接收机,技术指标主要包括工作频率范围、隔离度、插入损耗、稳定度、电压驻波比(VSWR),市场方面,双工器将从2022年的78.5亿美元增长至2023年的216.2亿美元,年复合增长率,10.7%。[19]
首先,无线通信技术多次迭代,终端普遍要求终端具备多模多频能力,无需任何改动就可漫游全球多个地区,这就需要基带芯片拥有向下兼容的能力,比如说覆盖2G/3G/4G/5G和Wi-Fi 6标准等;[25]
其次,基带芯片架构极为复杂,研发需要雄厚的技术储备及持续资金支持,硬件架构上,基带芯片多采用MCU(Arm)+DSP+ASIC的架构,涉及编解码、信道估计、信道均衡、同步与测量算法等[26];软件决定了基带芯片性能上限,涉及软件包括实时操作系统(RTOS)、 驱动程序(Drivers)和协议栈(Protocol Stack);[27]
最后,技术能力和经验都极为丰富的巨头垄断了市场,后进者仅一次决策失误或延期上市就可能会被竞争对手抢占市场,不断陷入被动局面,因此很多国外的传统供应商都已放弃基带芯片研发,比如说实力强劲的英特尔都不得不放弃基带芯片这块蛋糕。
射频芯片仍属于半导体投资领域,具有建设投资大、回报周期长、技术壁垒高的特点,许多投资机构仍然对它缺乏认识和判断,导致部分投产项目未达到预期,水平没有得到应有的提升;[44]
射频芯片设计经验大于理论,一些可靠有效的技术方案可能团队工程师也很难掌握,很多从事射频芯片的机构、公司、高校长期处于探索阶段,技术推进缓慢,存在重复性、基础性研发尝试情况,这需要各方达成共识,加速推进核心问题的攻克;
半导体人才短缺在射频领域尤甚,同样结构电路不同工程师做出的芯片版图最终仿真测试指标都会存在巨大差异,同时国内人才培养模式单一,需要进一步加强人才培养,不断推进产学研融合;[44]
国产不可能一蹴而就,Skyworks、Qorvo等巨头一年净利润就有四五十亿元,而国内一线企业一年净利只有5亿左右,虽然系统商渴望拥有多元的上游供应,但国内芯片厂商缺乏验证的机会,一些射频芯片厂商曾呼吁系统商保持开放合作态度,并对器件进行评估分析;[50]
全球都在受到经济和消费电子供需影响,并非只有国内企业过得难受,因此如何在下行周期内生存,会是射频芯片企业必须考虑的问题。
关键词: